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Abstract
A second-order strain gradient nonlocal shell model is established to study the mode
transformation in single-walled carbon nanotubes (SWCNTs). Nonlocal length is calibrated
carefully for SWCNTs in reference to molecular dynamics (MD) simulations through analysis
of nonlocal length effects on the frequencies of the radial breathing mode (RBM) and
circumferential flexural modes (CFMs) and its effects on mode transformation. All analyses
show that only a negative second-order nonlocal shell model is appropriate to SWCNTs.
Nonlocal length is evidently related to vibration modes and the radius-to-thickness ratio. It is
found that a nonlocal length is approximately 0.1 nm in an average sense when RBM frequency
is concerned. A nonlocal length of 0.122–0.259 nm is indicated for the mode transformation in
a selected group of armchair SWCNTs. 2:1 and 1:1 internal resonances are found for the same
SWCNT based on different models, which implies that the internal resonance mechanism
depends on the model employed. Furthermore, it is shown that an effective thickness of
approximately 0.1 nm is more appropriate to SWCNTs than 0.066 nm.

1. Introduction

Nonlocal continuum models have been successfully used to
analyse the deformation and vibrations of carbon nanotubes
(CNTs) (Zhang et al 2004, Wang and Hu 2005, Zhang
et al 2005, Hu et al 2008). The key feature in nonlocal
continuum theories is that the stress state at a point does
not only depend on the strain state at that point, but also
depends on the strain states of neighbouring points or even
all the points over the whole body. This feature makes the
nonlocal continuum models able to characterize deformations
caused by long-range interactions between atoms in a discrete
system. The increased size effects in nanoscales result in
the necessity of introducing nonlocal effects in continuum
models for CNTs. Since no length scale is contained in
classical (local) continuum theories, they congenitally fail to
predict size-dependent characteristics of microstructures. In
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contrast, a nonlocal length related to an internal length of
microstructures (e.g. bond length or lattice parameter) can be
introduced in nonlocal constitutive equations to represent size-
dependent properties of the material in micro-and nanoscales.
The mechanical behaviours of CNTs have been successfully
predicted by nonlocal models. For example, the axial buckling
strain has been investigated based on a nonlocal column
model (Sudak 2003) and nonlocal shell model (Zhang et al
2004), which demonstrated the overestimation of the critical
buckling strain by classical (local) models. In these studies,
it was found that the nonlocal effects depend on the buckling
mode and the length-to-radius ratio. Other studies applied
nonlocal continuum models successfully to the CNT dynamics,
e.g. vibrations (Zhang et al 2005, Duan et al 2007, Wang
et al 2007) and wave propagations (Wang and Hu 2005, Hu
et al 2008, Tounsi et al 2008). In the vibration of CNTs, it
is found that the nonlocal effects on the natural frequency of
CNTs increase with the increase of the vibration mode number.
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For elastic wave propagation in CNTs, wave dispersion, which
cannot be predicted by classical continuum models (Askes
and Aifantis 2006), can be predicted by nonlocal continuum
models (Wang and Hu 2005, Xie et al 2007, Hu et al
2008), which has been confirmed by molecular dynamics (MD)
simulations (Wang and Hu 2005).

In most nonlocal analyses of CNTs, Eringen’s nonlocal
elasticity theory (Eringen 1983a) (often referred to as a
positive second-order strain gradient nonlocal model) is
directly employed because the nonlocal length in that model
can be directly related to the internal length of material
microstructures (Askes et al 2002). However, it has been
shown that the second-order nonlocal model with a negative
strain gradient term (referred to as a negative second-order
strain gradient nonlocal model) can also contain information
on material microstructure (Ioannidou et al 2001). A hybrid
second-order nonlocal model, which includes strain inertia
terms in addition to the second-order strain gradient term, was
proposed (Metrikine and Askes 2002) in order to tackle the
failure situations of yielding positive or finite wave propagation
velocities by all the above nonlocal models (Askes and Aifantis
2006). However, the complexity of this hybrid second-order
nonlocal model, especially the complexity of its energy form,
prohibits its wide application (Askes and Aifantis 2006).

In all nonlocal continuum models, the nonlocal length
is understood as a fixed length parameter related to the
internal length of the material microstructure. Therefore, it
is important to calibrate this parameter carefully first in order
to yield valid predictions. A survey of nonlocal lengths (l)
or equivalently the nonlocal length scale e0 (e0 = l/aCC,
where aCC is the carbon–carbon bond length) used in nonlocal
models of CNTs and the calibration procedures undertaken are
summarized in table 1. In other nonlocal analyses of CNTs,
Eringen’s prediction of e0 ≈ 0.39 (Eringen 1983b) was simply
adopted (Sudak 2003, Xie et al 2007), or a finite range of
nonlocal lengths was assumed (e.g. 0–1.0 nm (Wang et al
2007)). Clearly, a wide range of nonlocal lengths pertaining
to CNTs have been obtained from different approaches, which
raises the issue of the uncertainty of this nonlocal parameter
and its influence on the predicted mechanical properties and
dynamical behaviours by the nonlocal model.

In the authors’ recent studies on mode transformation of
SWCNTs (Li and Shi 2008), classical (local) shell theory
predicts that one of the two circumferential flexural modes
(CFMs) 4 and 5 may be excited following the principal radial
breathing mode (RBM) for an infinitely long armchair SWCNT
(10, 10) (according to two effective thickness values, 0.066 nm
and 0.1 nm, respectively) (Li and Shi 2008). However, it
is observed in molecular dynamics (MD) simulations that
CFM-3 is excited in the armchair (10, 10) (Shi et al 2009).
This contradiction of excited CFMs is also observed for other
armchair SWCNTs. Therefore, it is necessary to develop a
nonlocal shell model to explain the discrepancy. For this
purpose, the Goodier–McIvor thin shell model (Goodier and
McIvor 1964, McIvor 1966) is extended to include nonlocal
effects in the present paper. Since only RBM and CFMs
with low wavenumbers are involved in vibration, the second-
order strain gradient nonlocal model is adopted to establish

Table 1. Summary of nonlocal lengths used for carbon nanotubes in
literature and the procedures taken in calibration.

e0 e0a Procedure

0–19a 0–2.7 Natural frequency within nonlocal Timoshenko
beam theory (against MD simulations based on
the COMPASS force field (Sun 1998))

Wave propagation within nonlocal Flugge shell
theory (against MD simulations based on the
second-generation reactive-empirical bond order
(REBO) potential (Brenner et al 2002))

0.2b 0.03 Torsional wave propagation
0.6b 0.08 Transverse wave propagation
0.29c 0.04 Wave propagation within nonlocal Timoshenko

beam model (adopting the theoretical prediction
of one-dimensional chain model, i.e. d/

√
12, d

is the separation between the nearest atoms
(Askes et al 2002))

0.82d 0.1 Buckling strain within nonlocal multiple shell
model (against molecular mechanics
simulations)

8.8e 1.2 Interaction between Stone–Wales and divacancy
defects on carbon graphene sheet (against MD
simulations)

Wave propagation within nonlocal Timoshenko
beam model

14f 2.0 Supporting available experimental vibration
frequency ≈0.1 THz

1479f 210 Supporting measured vibration frequency
�10 THz

a Duan et al (2007). b Hu et al (2008).
c Wang and Hu (2005). d Zhang et al (2005).
e Zhang et al (2006a). f Wang (2005), Wang et al (2006).

a nonlocal Goodier–McIvor thin shell model. Frequencies of
RBM and CFMs and mode transformations predicted by the
proposed nonlocal model are compared with predictions from
MD simulations, based on which the following two issues
are carefully studied, i.e. (1) determine which one between
the positive and negative second-order strain gradient nonlocal
models is appropriate for the study of vibration in SWCNTs
and (2) calibrate the nonlocal length.

2. Nonlocal Goodier–McIvor shell theory

When an infinitely long cylindrical shell undergoes deforma-
tion independent of longitudinal direction, it is reduced to a
two-dimensional plane strain problem. As shown in figure 1(a),
a point P on the undeformed middle surface of a thin cylindrical
shell of radius a and thickness h moves to a point P∗ at time
t . (a, θ ) and (r, φ) are the polar coordinates of points P and
P∗, respectively, and the coordinates of the current position
P∗ are functions of the coordinates of the original position
P, i.e. r = r(θ, t) and φ = φ(θ, t). By introducing two
nondimensional deformation variables ξ and ψ:

ξ = 1 − r

a
ψ = φ − θ, (1)

2
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Figure 1. (a) A schematic representation of the deformation of a cylindrical shell with centroid fixed, (b) part of a shell cross section.

membrane strain ε0 and curvature κ can be determined,
respectively, as

ε0 = ψ ′ − ξ − ξψ ′ + 1
2ξ

′2, (2)

aκ = 1 + ξ ′′ + ξ − (ξ ′ψ ′)′ − ξ ′′(ψ ′ − 2ξ)+ ξ 2 + 1
2ξ

′2, (3)

where the prime indicates partial derivatives with respect to
angle θ . In equations (2) and (3), terms higher than second
order are omitted, which may affect the accuracy of numerical
solutions at large time, but will not influence the flexural modes
to be excited. The circumferential strain εθ at a point above the
central line z as shown in figure 1(b) is given as

εθ (z) = ε0 + (1 + ε0)(aκ − 1)
(

1 − z

a

) z

a
, (4)

in which terms of order higher than (z/a)2 are discarded. It
may be necessary to point out that basic assumptions for small
deformation of thin shells (i.e. surface normal is reserved and
thickness is unchanged) are used to derive the strain expression
given in equation (4). The circumferential stress σθ at the same
point according to the second-order strain gradient nonlocal
model is

σθ = E1(1 + γ l2∇2)εθ , (5)

where E1 = E/[2(1 − ν2)]; E is elastic modulus; ν is
Poisson’s ratio; l is nonlocal length; γ = +1 or −1 denoting
positive or negative second-order nonlocal models. For plane
strain problems, the Laplacian operator ∇2 in equation (5) is
given as

∇2 = ∂2

∂z2
+ 1

(a + z)2
∂2

∂θ2
≈ ∂2

∂z2
+

[
1 − 2

z

a
+ 3

( z

a

)2
]

× 1

a2

∂2

∂θ2
. (6)

For a circular cylindrical shell, its response can be described
by the following series:

ξ = a0(τ )+
∞∑

n=1

an(τ ) cos nθ +
∞∑

n=2

cn(τ ) cos nθ, (7)

ψ = −
∞∑

n=1

nan(τ ) sin nθ +
∞∑

n=2

n−1cn(τ ) sin nθ, (8)

Figure 2. Nonlocal length effect on RBM frequency.

where the terms an(τ ) cos nθ and cn(τ ) cos nθ represent exten-
sional and inextensional flexural deformation, respectively, and
c1(τ ) cos θ is discarded since it refers to rigid translation. The
kinetic energy and potential energy of the whole system need
to be defined first before the Lagrange equation is applied to
derive governing equations for a0, an and cn in equations (7)
and (8). For a circular cylindrical shell of unit length, the
kinetic energy is given as

T = 1

2
ρah

∫ 2π

0

[(
∂r

∂ t

)2

+
(

r
∂ψ

∂ t

)2
]

dθ

= 1
2 E1ah

∫ 2π

0
[ξ̇ 2 + (1 − ξ)2ψ̇2] dθ. (9)

where ρ is the mass density and a dot above a symbol refers to
the derivative with respect to a nondimensional time variable
τ = tc/a, in which phase velocity c = √

E1/ρ. The potential
energy is

U =
∫ 2π

0
a dθ

∫ h/2

−h/2

1
2σθεθ dz

= 1
2 E1a

∫ 2π

0
dθ

∫ h/2

−h/2
εθ (1 + γ l2∇2)εθ dz

3
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Figure 3. Variation of the frequency of inextensional flexural mode 3 versus nonlocal length in both positive and negative nonlocal models
against MD simulations for armchair (10, 10): (a) thickness 0.066 nm and (b) thickness 0.1 nm.

(This figure is in colour only in the electronic version)

Figure 4. Mathieu stability diagram of the first two stable and
unstable regions where predictions based on three models (i.e. local,
positive and negative nonlocal models) are shown. In the nonlocal
model, two nonlocal lengths, 0.1 and 0.15 nm, are used.

= 1
2 E1a

∫ 2π

0
dθ

∫ h/2

−h/2
[ε2
θ + εθγ l2∇2εθ ] dz

= πE1ah[Ulocal + Unonlocal], (10)

in which the normalized potential energy part Ulocal is
associated with the local elasticity theory and the other
part Unonlocal denotes the additional nonlocal contribution.
Substituting the strain expression given by equation (4)
into (10) and integrating the resulting expression along
thickness leads to

Ulocal = 1

2π

∫ 2π

0
dθ [ε2

0 + α2(1 + ε0)
2(aκ − 1)2

− 2α2ε0(1 + ε0)(aκ − 1)], (11)

where the aspect ratio α = h/(2
√

3a) and

Unonlocal = γ

(
l

a

)2 1

2π

∫ 2π

0
Ũnonlocal dθ, (12)

Figure 5. Critical curves in the first and second stable and unstable
regions of the Mathieu stability diagram, which are determined by
Floquet theory and asymptotic theory.

where

Ũnonlocal = −2ε0(1 + ε0)(aκ − 1)+ 2α2(1 + ε0)
2(aκ − 1)2

+ [ε0(1 + 3α2)− 3α2(1 + ε0)(aκ − 1)]∂
2εθ

∂θ2

+ [−3α2ε0 + α2(1 + ε0)(aκ − 1)]
× ∂2

∂θ2
[(1 + ε0)(aκ − 1)]. (13)

Substituting membrane strain ε0 given by equation (2) and
curvature κ given by equation (3) into equations (11) and (13),
respectively, and simplifying the results leads to

Ulocal = 1

2π

∫ 2π

0
dθ [(ψ ′ − ξ)2 + (ψ ′ − ξ)(ξ ′2 − 2ξψ ′)

+ α2(ξ + ξ ′′)(3ξ + ξ ′′ − 2ψ ′)], (14)

and

Ũnonlocal = −(ψ ′ − ξ)(2ξ + 3ξ ′′ − ψ ′′′)
− 2(ψ ′ − ξ)(ψ ′ξ − ψ ′ξ ′′ − ψ ′′ξ ′ + ξξ ′′ + 1

2ξ
′2)

4
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+ (ψ ′ − ξ)(−ψ ′′′ξ − 2ψ ′′ξ ′ − ψ ′ξ ′′ + ξ ′ξ ′′′ + ξ ′′2)
+ (ψ ′′′ − 2ξ − 3ξ ′′)(−ψ ′ξ + 1

2ξ
′2)

+ 2α2(ξ + ξ ′′)2 + 3α2(ψ ′ − ξ)(ψ ′′′ − 2ξ ′′ − ξ (4))

+ α2(ξ + ξ ′′)(4ξ ′′ + ξ (4) − 3ψ ′′′), (15)

where ξ (4) indicates the fourth-order partial derivative with
respect to angle θ . In equation (15), the first term
−(ψ ′ − ξ)(2ξ + 3ξ ′′ − ψ ′′′) is of second order and is the
dominant term in the nonlocal potential energy part. Now
the kinetic energy and potential energy are expressed through
the two nondimensional variables ξ and ψ . Substitute modal
expansions of ξ and ψ given by equations (7) and (8) into the
final expressions of T and U given by equations (9), (10), (14)
and (15) and use generalized coordinate qi to represent
a0, . . . , an , c1, . . . , cn in sequence in the Lagrange equation

∂

∂τ

(
∂T

∂ q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
= 0, i = 1, 2, . . . , (16)

we then obtain the following governing equations of a0, an and
cn:

ä0 + a0(1 + 3α2)− 1
4

∞∑
n

(n2 − 2)c2
n + 1

2�a0 = 0, (17)

än + (n2 + 1)an − 2α2 n2 − 1

n2 + 1
cn − n2 − 2

n2 + 1
a0cn

+ 1
4

∞∑
m=1

{[2 − m(m + n)]cmcm+n

+ [2 − m(m − n)]cmc|m−n|} + 1

n2 + 1
�an = 0, (18)

c̈n + α2 n2(n2 − 1)2

n2 + 1
cn − n2(n2 − 2)

n2 + 1
a0cn + n2

2(n2 + 1)

×
∞∑

m=1

{[2 − n(m + n)]cm+n + [2 + n(m − n)]c|m−n|}

× (m2 + 1)am
n2

n2 + 1
�cn = 0. (19)

In equations (17)–(19), �a0 , �an and �cn , respectively,
represent the contributions from the nonlocal potential energy
part to the final governing equations of a0, an and cn , and are
given by

�a0 = γ

(
l

a

)2

[4a0 + · · ·], (20)

�an = γ

(
l

a

)2

[−n2(n2 + 1)2an + · · ·], (21)

�cn = γ

(
l

a

)2

[−α2(n2−2)(n2−1)2cn−(4n2−6)a0cn+· · ·],
(22)

in which only the most dominant terms are shown. It should be
noted that equations (17)–(19) have been simplified based on
the fact that the amplitude of extensional flexural mode terms
an is smaller than that of the inextensional flexural mode term
cn (Goodier and McIvor 1964). Those higher-order terms not
shown in equations (20)–(22) will be included in the numerical
calculations when numerical solutions are obtained. It can

Figure 6. Cross-sectional shapes of armchairs from (8, 8) to (11, 11)
at initial state and the time when the third mode of CFM (CFM-3) is
first excited. The CFM initiation time has units of ps.

be easily seen from equations (17)–(22) that, given a fixed
nonlocal length l, the larger the circular cylindrical shell, the
smaller the nonlocal length effect on mode transformations.

Now the governing equations for the in-plane vibration
of a nonlocal Goodier–McIvor shell have been established,
based on which numerical simulations can be performed when
initial conditions are prescribed. As discussed in section 1,
available values of nonlocal length in the literature vary over
a wide range. Each approach used in calibrating nonlocal
length focuses on one specific mechanical behaviour of CNTs
and the value of nonlocal length is obtained by comparing
nonlocal continuum model predictions against experimental
observations or MD simulations. In the following two sections
the effects of nonlocal length on the frequencies of RBM and
CFMs, and on the mode transformation in SWCNTs, will be
investigated, based on which it will be determined whether
positive or negative nonlocal models are appropriate to CNTs
and the nonlocal lengths suitable for the study of vibration and
mode transformation in CNTs.

3. Nonlocal effect on frequencies of RBM and CFMS

Governing equations (17)–(19) contain nonlinear terms. When
they are linearized, the governing equations of a0, an and cn

are
ä0 + k2

RBMa0 = 0, (23)

än + k2
Extensionalan = 0, (24)

c̈n + k2
Inextensionalcn = 0, (25)

where kRBM, kExtensional and kInextensional are, respectively,
circular frequencies of RBM, nth extensional flexural mode

5
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Figure 7. The most likely excited flexural mode and the critical
initial velocity of armchair (8, 8) based on (a) negative nonlocal
model, (b) and (c) positive nonlocal model.

and nth inextensional flexural mode, i.e.

kRBM =
√

1 + 3α2 + 2γ

(
l

a

)2

, (26)

kExtensional =
√√√√(n2 + 1)

[
1 − n2γ

(
l

a

)2
]
, (27)

Figure 8. The most likely excited flexural mode and the critical
initial velocity of armchair (9, 9) based on (a) negative nonlocal
model, (b) and (c) positive nonlocal model.

kInextensional = α

√√√√n2
(
n2 − 1

)2

n2 + 1

[
1 − (n2 − 2)γ

(
l

a

)2
]
.

(28)
Since the nondimensional time variable in equations (17)–(19)
is defined as τ = tc/a, then the frequency of each mode in

6
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Figure 9. The most likely excited flexural mode and the critical
initial velocity of armchair (10, 10) based on (a) negative nonlocal
model, (b) and (c) positive nonlocal model.

units cm−1 can be obtained as

fRBM = 1

2π

c

clight

1

a

√
1 + 3α2 + 2γ

(
l

a

)2

(cm−1), (29)

fExtensional = 1

2π

c

clight

1

a

×
√√√√(n2 + 1)

[
1 − n2γ

(
l

a

)2
]
(cm−1), (30)

Figure 10. The most likely excited flexural mode and the critical
initial velocity of armchair (11, 11) based on (a) negative nonlocal
model, (b) and (c) positive nonlocal model.

fInextensional = α
1

2π

c

clight

1

a

×
√√√√n2(n2 − 1)2

n2 + 1

[
1 − (

n2 − 2
)
γ

(
l

a

)2
]
(cm−1). (31)

7
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In equations (29)–(31) clight = 2.998×1010 cm s−1 is the speed
of light. From the formula for fRBM, fExtensional and fInextensional

given by equations (29)–(31), in order to avoid an imaginary
frequency value for each of them, it can be easily seen that
there exist nonlocal length upper limits for fRBM within the
negative nonlocal model and for fExtensional and fInextensional

within the positive nonlocal model. Comparing fRBM with
fExtensional, it can be found that in the local shell model, when
the small term 3α2 (compared to 1) in fRBM is neglected, fRBM

is equivalent to the case of fExtensional with n = 0. Assume that
the nonlocal length l is of the order of thickness h of SWCNTs,
and (l/a)2 and α2 in the expression of fRBM are smaller terms
in comparison to unity, then

fRBM = 1

2π

c

clight

1

a

√√√√1 + 3α2

[
1 + 8γ

(
l

h

)2
]

≈ 1

2π

c

clight

1

a

{
1 + 3

2
α2

[
1 + 8γ

(
l

h

)2
]}

= A

a
+ B

a3
, (cm−1) (32)

in which

A = 1

2π

c

clight
, (33a)

B = 1

16π

c

clight

[
1 + 8γ

(
l

h

)2
]

h2. (33b)

Therefore

fRBM = A

a

[
1 +

(
h

a

)2
(

0.125 + γ

(
l

h

)2
)]

. (34)

RBM is one of the most important modes of SWCNTs. RBM
frequency with varying nonlocal lengths within both positive
and negative nonlocal models are plotted in figure 2 through an
example of armchair (10, 10). It can be seen that the nonlocal
length in positive and negative second-order nonlocal models
influences the RBM frequency in opposite ways.

The expression of RBM frequency fRBM given in
equation (34) shows that the term A/a is dominant. In order
to determine the dominant term A/a, the phase velocity c

of CNTs defined as
√

E
ρ(1−ν2)

=
√

Eh
ρh(1−ν2)

is estimated.

The reported in-plane stiffness Eh is between 300 and
422 J m−2 (Wang and Zhang 2008). The mean value Eh =
360 J m−2 supports experiments and theoretical evaluations
reasonably well (Wang and Zhang 2008), which will be used
in this study. The transverse mass density is ρh = 7.72 ×
10−7 kg m−2 and Poisson’s ratio ν = 0.19 according to MD
simulations (Yakobson et al 1996). Thus, the phase velocity of
SWCNTs is estimated to be c ≈ 22.0 km s−1.

The thickness concept of an SWCNT is only associated
with macroscopic continuum models as a real SWCNT is a
collection of discrete carbon atoms. A range of SWCNT
effective thicknesses from 0.0617 to 0.69 nm has been
indicated based on different approaches (Wang and Zhang
2008). Next, we will determine its value based on two
important concepts, i.e. in-plane stiffness Eh and in-plane

bending stiffness D = Eh3/[12(1 − ν2)]. The in-plane
stiffness Eh is given as 360 J m−2, as just discussed above.
The in-plane bending stiffness D = 0.85 eV was suggested in
Yakobson et al (1996), which leads to an effective thickness of
0.066 nm. Recent ab initio calculations predicted the in-plane
bending stiffness D in a range of 1.95–2.16 eV with a mean
value 2.0 eV (Wang et al 2005). Thus, when D = 2.0 eV,
Eh = 360 J m−2 and ν = 0.19, another effective thickness
of SWCNTs can be determined approximately as 0.1 nm. In
the following analysis, two values of the effective thickness of
SWCNTs, i.e. 0.066 nm and 0.1 nm, will be used respectively
for parametric sensitivity analysis.

Given c ≈ 22.0 km s−1 and clight = 2.998 × 1010 cm s−1,
the factor A in the approximate expression of fRBM given by
equation (33) can be determined as 116.7 nm cm−1, which
agrees very well with the fitted constant of A = 117 nm cm−1

in Kurti (1998) and A = 116.6 nm cm−1 in Sanchez-
Portal et al (1999). Thus, for armchair (10, 10) (radius
a = 0.678 nm), A/a = 172.8 cm−1. Then, according
to equation (34), if the actual RBM frequency of armchair
(10, 10) is smaller than 172.8 cm−1, the sign factor γ in
the nonlocal model must be negative, which implies that the
negative second-order nonlocal model should be adopted for
RBM of SWCNTs. Otherwise, the positive second-order
nonlocal model should be adopted. RBM frequency values
of armchair (10, 10) have been reported in the literature,
e.g. 165.0 cm−1 (Rao et al 1997, Kuzmany et al 1998),
169.0 cm−1 (Lawler et al 2005) and 174–175 cm−1 (Kurti
1998). Since the reported RBM frequency values of armchair
(10, 10) are either below or above 172.8 cm−1, it is difficult
to use these data to determine whether a positive or negative
second-order nonlocal model is appropriate for the modelling
of SWCNTs.

In line with the present mode transformation analysis of
SWCNTs, MD simulations are carried out here for frequency
analysis of SWCNTs using commercial software Material
Studio (Accelrys 2008). Atomic force field COMPASS
(condensed phase optimized molecular potentials for atomistic
simulation studies) is employed to govern motions of all atoms
through the Discover module of the software. The parameters
of the COMPASS force field are derived from ab initio quantum
mechanics calculations (Sun 1998, Sun et al 1998). A selection
of armchairs from (8, 8) to (11, 11) are chosen for MD
simulations since their geometry aspect ratios α are among
the range approximately suitable for the nonlocal shell models
and experimental identifications of them are reported (Rao
et al 1997). The MD simulation results of RBM frequency
for all the armchairs are presented in table 2, in which the
calculated values of A/a are also included. It shows that the
calculated values of A/a for all the selected armchairs are
consistently larger than the corresponding MD predictions, and
therefore a negative second-order strain gradient nonlocal term
is required to compensate for the difference between A/a and
MD prediction for each armchair. Values of the nonlocal length
for all selected armchairs can be calculated by matching RBM
frequencies based on equation (34) with the corresponding
MD predictions and the results are also listed in table 2. In
order to check the sensitivity of calculated nonlocal length to
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Table 2. RBM frequency of armchairs from (8, 8) to (11, 11) from
MD simulations and the calculated nonlocal length in the negative
nonlocal model for each armchair based on equation (34). Two cases
are studied: thickness h = 0.066 nm and 0.1 nm, respectively.

l (nm)

Armchair a (nm) fRBM (cm−1) A/a h = 0.066 nm h = 0.1 nm

(8, 8) 0.542 211.87 215.31 0.073 0.078
(9, 9) 0.610 187.54 191.31 0.090 0.094
(10, 10) 0.678 168.01 172.12 0.109 0.112
(11, 11) 0.746 152.10 156.43 0.128 0.131

thickness, two thickness values, 0.066 nm and 0.1 nm, are used
respectively in the determination of nonlocal length. It is found
that the calculated nonlocal lengths for the same armchair
are very close to each other for these two different thickness
values, and therefore nonlocal length is not sensitive to the
thickness regarding RBM frequency. This is important since
hitherto no unique effective thickness value of SWCNTs has
been accepted in the literature. However, nonlocal length is
clearly dependent on the armchair radius or on the radius-to-
thickness ratio for a given wall thickness in respect of RBM
frequency. Since the present nonlocal model can only deal with
fixed nonlocal length and RBM is the initial vibration mode
that may excite CFMs due to an internal resonance mechanism,
we use the average of calculated nonlocal length values as a
representative nonlocal length in further analyses. Based on
the data in table 2, the average nonlocal length l is determined
as 0.100 nm (for h = 0.066 nm) and a close value of 0.104 nm
(for h = 0.1 nm), which accordingly gives B in equation (33)
as −1.10 and −1.02 cm−1 nm3, respectively. Therefore a
representative nonlocal length for SWCNTs is taken as l ≈
0.1 nm, or nonlocal length scale e0 = l/aCC ≈ 0.7. The
term containing nonlocal length dominates the expression of B ,
and therefore, in the RBM expression given by equation (32),
B/a3 represents a nonlocal correction of the dominant RBM
frequency term A/a.

However, it might be argued that the approach using the
expression fRBM = A/a + B/a3 to evaluate the nonlocal
length may be questionable since B/a3 is much smaller than
the dominant term A/a. (Note: according to equations (33a)
and (33b), | B/a3

A/a | = 3
2 |1 + 8γ ( l

h )
2|α2, which, considering

the assumption that the nonlocal length is of the order of the
thickness, will be of the order of α2, and therefore this ratio
is much smaller than unity because the squared aspect ratio
α2 = h2/(12a2) is a higher-order small term.) Therefore,
more careful examination of nonlocal length is necessary.
Next, frequencies of low CFMs will be compared between
nonlocal model predictions and MD simulations, based on
which it will be determined again whether the positive or
negative nonlocal model should be adopted for SWCNTs
and meanwhile nonlocal length will be calibrated. First,
frequencies of CFMs from MD simulations are obtained for the
selected armchairs and the results including RBM frequency
are given in table 3. It can be seen from the table that
frequencies of CFM-2 to CFM-4 for each armchair are smaller
than the RBM frequency, and therefore they should belong
to inextensional flexural modes since RBM in the local shell

Table 3. RBM and CFM frequencies (from mode 2 to mode 7)
based on ab initio MD simulations.

CFM

Armchair RBM 2 3 4 5 6 7

(8, 8) 211.87 42.99 112.85 207.99 316.06 429.90 529.50
(9, 9) 187.54 34.42 92.78 172.61 265.01 367.82 470.03
(10, 10) 168.01 26.96 77.42 144.85 224.32 314.66 409.39
(11, 11) 152.10 20.71 65.46 123.07 191.55 270.76 355.99

Table 4. Nonlocal lengths for various CFMs for a range of armchair
SWCNTs.

h = 0.066 nm h = 0.1 nm

Armchair 2 3 4 2 3 4

(8, 8) 0.716 0.347 0.232 0.363 0.163 0.103
(9, 9) 0.820 0.411 0.280 0.420 0.202 0.133
(10, 10) 0.872 0.475 0.325 0.434 0.240 0.161
(11, 11) 0.870 0.538 0.372 0.399 0.277 0.188
Average 0.820 0.443 0.302 0.404 0.221 0.146

model is equivalent to the extensional flexural mode with
n = 0 and the nonlocal contribution to CFM frequency is
secondary in comparison with the local contribution. Take
armchair (10, 10) as an example: variation of the frequency
of inextensional flexural mode 3 versus nonlocal length within
positive and negative nonlocal models are plotted against MD
simulations, respectively, in figure 3(a) for a thickness of
0.066 nm and (b) for a thickness of 0.1 nm. Due to the
similarity, frequencies of inextensional flexural modes 4 and
5 within the two nonlocal models are not plotted.

The graphs in the above figure show that the positive
nonlocal model is incapable of predicting the same frequency
of inextensional flexural mode 3 predicted by MD simulations.
Therefore, only the negative nonlocal model is appropriate to
nonlocal modelling of SWCNTs. The fitted nonlocal length
values within the negative nonlocal model for low CFMs (2, 3
and 4) against MD simulations are listed in table 4. Clearly, the
fitted nonlocal length is related to both the effective thickness
of SWCNTs and the wavelength of CFMs, which supports
available reports in the literature (Zhang et al 2005, Duan et al
2007, Hu et al 2008).

4. Nonlocal effect on mode transformation

When a circular cylindrical shell is subjected to a nearly
uniform radial impulse, without losing generalities, the initial
conditions of nondimensional variables ξ and ψ can be
described by

ξ(θ, 0) = ψ(θ, 0) = 0, (35)

ξ̇ (θ, 0) = 1

c

(
v0 +

∞∑
n=1

vn cos nθ

)
,

ψ̇(θ, 0) = −v1

c
sin θ.

(36)

In the above equations, v0 stands for a perfectly uniform radial
velocity and vn terms represent the imperfections, which are
normally at least two orders smaller than v0. Equations (35)

9
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Figure 11. Excitation probability of CFMs based on negative
nonlocal model as nonlocal length varies in a range 0–0.5 nm for
armchairs from (8, 8) to (11, 11) with thickness 0.1 nm.

and (36) together with equations (7) and (8) give the initial
conditions for a0, an and cn in the governing equations (17)–
(19), i.e.

a0(0) = 0, ȧ0(0) = v0

c
, (37a)

a1(0) = 0, ȧ1(0) = v1

c
, (37b)

an(0) = 0, ȧn(0) = 1

n2 + 1

vn

c
, n � 2 (37c)

cn(0) = 0, ċn(0) = n2

n2 + 1

vn

c
, n � 2. (37d)

Initially, the amplitudes of cn (n � 2) are small because the
imperfections are small in initial condition equations (37a)–
(37d). When the terms cn are omitted in equation (17), it
is reduced to the linear equation (23). A harmonic vibration
solution of equation (23) with initial condition given in
equation (37a) can be easily obtained as

a0 = v0

kRBMc
sin(kRBMτ ) = v0

kRBMc
sin

(
kRBM

c

a
t
)
. (38)

With the solution of a0 and the assumption of |am| �
|cm|, (m � 2) (since it is reasonably assumed that, for thin
shells, the coupling between RBM and the inextensional
flexural modes is much stronger than that between RBM and
the extensional flexural modes (Goodier and McIvor 1964)),
the governing equation (19) of cn can be reduced to a Mathieu-
type equation:

c̈n + (�n − μn sin η)cn = 0, (39)

where

�n = n2(n2 − 1)2

n2 + 1

[
1 − (n2 − 2) · γ

(
l

a

)2
]

1

k2
RBM

α2, (40)

μn = n2

n2 + 1

[
n2 − 2 + (4n2 − 6) · γ

(
l

a

)2
]

1

k2
RBM

v0

c
,

(41)
in which the new nondimensional time variable η is given as
η = kRBMτ . When γ is set as zero, the governing equation of
cn, equation (40), will revert to the equation in classical (local)
elasticity shell theory (i.e. equation (48) in Goodier and McIvor
1964).

The procedure for the determination of mode transforma-
tion is described below. For a circular cylindrical shell with
given initial conditions, the pair of parameters (α, v0/c) are
calculated. Then, points (�n, μn) are calculated for various
flexural vibration mode numbers n. If one or more points of
(�n, μn) fall in any unstable region of the Mathieu stability
diagram (unshaded areas in figure 4), the corresponding
flexural vibration mode(s) n can be excited from the initial
RBM, which represents the occurrence of mode transformation
between RBM and CFM(s). The nonlocal contributions to
the values of (�n, μn) are related to γ (l/a)2, as shown in
equations (40) and (41). The nonlocal length effect on mode
transformation will be analysed in two steps.

In the first step, the nonlocal length effect on mode
transformation is investigated in a qualitative sense and a
circular cylindrical shell of armchair (10, 10) is taken as an
example. Using the radius a = 0.678 nm and thickness
h = 0.1 nm, its aspect ratio is α = h/(

√
12a) = 0.043.

Given initial velocity v0/c = 0.025 and two nonlocal lengths
of 0.1 nm and 0.15 nm, respectively, all the points (�n, μn) in
the first two stable and unstable regions of the Mathieu stability
diagram are shown in figure 4, which leads to the following
observations.

(1) Nonlocal length effect on the values of (�n, μn), and
thus on mode transformation, is stronger for higher modes
of CFMs (e.g. modes 4 and 5) than for lower modes
(e.g. modes 2 and 3). Such an influence increases
remarkably as mode number increases. This observation
agrees qualitatively with other investigations on nonlocal
effects (Sudak 2003, Zhang et al 2005, 2006b, Duan et al
2007).

(2) In comparison with the predicted values of (�n, μn) based
on local model (solid line), positive and negative nonlocal
models have opposite effects on the predicted values of
(�n, μn), and thus on the possibly excited flexural modes.
The positive nonlocal model makes the (�n, μn) curve
of the CFMs steeper (dashed line) and accordingly higher
modes are more likely excited while the negative nonlocal
model makes the (�n, μn) curve of the CFMs flatter
(dotted line), and as a result lower modes are more likely
excited.

(3) In either positive or negative nonlocal models, the larger
the nonlocal length, the stronger the nonlocal effects on
predicted (�n, μn) values and mode transformation.

In the second step, a rigorous analysis of the nonlocal
length effect on mode transformation is carried out in
a quantitative sense. The critical curve μ = μ(�)

to distinguish stable and unstable boundaries in the first
and second regions of the Mathieu stability diagram is
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Figure 12. Response of armchair (10, 10) (h = 0.1 nm) within local model in real-time domain. (a) RBM, (b) CFM-5 and (c) total response
at point θ = 0 on middle surface (v0/c = 0.02), (d) CFM-2, (e) CFM-3 and (f) CFM-4.

determined numerically by Floquet theory and asymptotic
theory (McLachlan 1947, Struble 1962), as shown in
figure 5. The analytical expression of μ = μ(�) based on
asymptotic theory is given in McLachlan (1947), Struble
(1962), i.e.

|1 − 2ω| = μ

2ω
for region I (42)

and
∣∣∣∣

μ2

2ω(4ω2 − 1)
+ 2(1 − ω)

∣∣∣∣ = μ2

4ω(2ω − 1)
for region II (43)

where ω = √
�. We can then determine the critical

initial velocity for a selection of armchairs from (8, 8)

to (11, 11) based on three models, i.e. local elastic shell
model, positive and negative nonlocal elastic shell models.

For a given armchair SWCNT and a given mode of
CFM, the �n value can be determined while the μn value
depends on the initial velocity. In the Mathieu stability
diagram defined by the critical curve μ = μ(�), CFM(s)
with the lowest initial velocity beyond the critical curve
is the most likely excited mode(s) in an elastic circular
cylindrical shell. This method will be used to calculate
the most likely excited CFM(s) for each of the selected
armchairs. Two thickness values, 0.066 nm and 0.1 nm,
are used, respectively, in the investigation exploring the
possible influence of shell thickness in the nonlocal model
on mode transformation. The representative nonlocal
length of 0.1 nm determined previously (by fitting RBM
frequency against MD simulations) is used. The most
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Table 5. Most likely excited CFM(s) and the corresponding critical
initial velocities for selected armchairs from (8, 8) to (10, 10) based
on asymptotic critical curve of the Mathieu stability diagram. (Notes:
(1) LC, NL(+) and NL(−) represent the results within local, positive
or negative nonlocal models (use l = 0.1 nm), respectively; (2) I and
II correspond to thicknesses h = 0.066 nm and 0.1 nm, respectively;
(3) mode superscripted by ∗ indicates that it is excited in the second
unstable region.)

Mode (n) Critical initial velocity (v0/c)

Armchair LC NL (+) NL (−) LC NL(+) NL(−)

(8, 8)
I 4 5 4 0.0016 0.0081 0.0301
II 3 5 3 0.0250 0.0062 0.0119
(9, 9)
I 4 5 4 0.0064 0.0044 0.0083
II 3 6 3 0.0323 0.0018 0.0272
(10, 10)
I 4 6 4 0.0114 0.0009 0.0035
II 5∗ 4 3 0.0059 0.0007 0.0349
(11, 11)
I 5 7 4 0.0109 0.0012 0.0103
II 4 4 4 0.0106 0.0031 0.0285

likely excited CFM(s) above the critical curve for each of
the selected armchairs is shown in table 5. In addition
to the three observations based on figure 4, further
observations are obtained based on the results given in
table 5, i.e.

(4) Mode transformation is very sensitive to the thickness and
radius of the shell. Normally, with the decrease of the
aspect ratio α (i.e. the shell becomes thinner), the higher
mode(s) of CFM(s) is more likely excited. However,
exceptions exist in local and positive nonlocal models. For
example, the most likely excited mode in armchair (10, 10)
changes from 5 to 4 when the thickness decreases from
0.1 to 0.066 nm according to the local model. In another
example, the most likely excited mode in armchair (9, 9)
changes from 6 to 5 when the thickness decreases from 0.1
to 0.066 nm according to the positive nonlocal model.

(5) The positive nonlocal model does not surely predict the
excitation of a higher flexural mode than the local model.
For instance, in armchair (10, 10) with thickness 0.1 nm,
flexural mode 4 is likely excited according to the positive
nonlocal model in contrast to mode 5 predicted by the
local model. However, it seems that the negative nonlocal
model consistently predicts a lower or equal flexural mode
to be excited when compared to the local model.

The most likely excited CFMs are shown in table 5 for
armchairs from (8, 8) to (10, 10). The data in table 5 show that,
for armchair (10, 10), the local model predicts the excitation of
CFM 5 in the second unstable region of the Mathieu stability
diagram. However, both nonlocal models predict the excitation
of CFMs in the first unstable region. This explains why
observation (5) seems to contradict observation (2).

Clearly it can be seen from the calculated results in table 5
that, given a circular cylindrical shell (with fixed thickness and
radius), different CFMs may be excited according to different
continuum models, and therefore it is necessary to employ
a more reliable tool to evaluate which one among the three

models is most appropriate for SWCNTs. MD simulations
using commercial software Material Studio (Accelrys 2008)
with the module Forcite Plus and the atomistic force field
COMPASS. Sun (1998), Sun et al (1998) is again employed
for this purpose. The same group of armchairs from (8, 8)
to (11, 11) are investigated and each of them is assumed to
be infinitely long so that a lattice unit structure is used in the
study. When the initial pure RBM vibration is introduced, the
subsequent vibration process is observed through the module
(Shi et al 2009). An initial RBM velocity as low as possible is
imposed such that the most likely excited CFM can be captured
if it is excited. The time step taken is 1 fs and the simulation
time runs up to 100 ps. The configuration of each lattice unit
when CFM is excited and the excitation time are shown in
figure 6.

It is found that CFM-3 is excited for all examined
armchairs from (8, 8) to (11, 11). According to the results
in table 5, only the negative nonlocal model (with nonlocal
length 0.1 nm) is able to predict the excitation of CFM-3 for
armchairs (8, 8) to (10, 10), though the predicted mode for
armchair (11, 11) based on the negative nonlocal model is
CFM-4, which is different from the MD prediction of CFM-3.
The positive nonlocal model does not predict CFM-3 for all the
armchairs examined. Since a nonlocal length of 0.1 nm is used,
predictions in table 5 are related only to this nonlocal length
value. Therefore a detailed analysis of mode transformation
with various nonlocal lengths is necessary. A range of 0–
0.5 nm of nonlocal length with a resolution 0.001 nm is
used to identify the most likely excited CFMs for the same
group of armchairs. Two thickness values, 0.066 nm and
0.1 nm, are used again for all armchairs, respectively. For
each nonlocal length within the range of 0–0.5 nm, the most
likely excited CFM and the normalized critical initial velocity
are plotted. Results for the sub-range (0, 0.2 nm) are presented
in figures 7–10 for demonstration purposes. Graphs (a) in the
above figures show the CFMs (CFM-3 to CFM-5 or CFM-
6) to be excited based on the negative nonlocal model and
the required critical initial velocity. Graphs (b) and (c) in
all the figures correspond to predictions based on the positive
nonlocal model for armchairs with thicknesses 0.066 nm and
0.1 nm, respectively. For all the cases within the positive
nonlocal model, higher modes (higher than 6) are found to
be occasionally excited and the critical initial velocity varies
continuously for lower modes when nonlocal length is small.
However, as nonlocal length increases, the excited flexural
modes decrease (e.g. in the case of armchair (10, 10) with
thickness either 0.066 or 0.1 nm, the excited mode changes
from 5 to 4 around a nonlocal length 0.14 nm and then from 4
to 3 around a nonlocal length 0.18). At these special nonlocal
lengths, where excited mode number decreases, critical initial
RBM vibration velocity increases sharply. This discontinuous
characteristic of critical initial velocity in the positive nonlocal
model is evidently in contrast to the continuity of the critical
initial velocity in the negative nonlocal model, which can be
explained by observation (2), or by figure 4, i.e. the larger the
nonlocal length, the steeper the critical initial velocity curve
within the positive nonlocal model but the flatter within the
negative nonlocal model.
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Figure 13. Response of armchair (10, 10) (h = 0.1 nm) within the
local model in frequency domain. (a) RBM, (b) CFM-5 and (c) total
response at point θ = 0 on the middle surface. (v0/c = 0.02.)

It may be necessary to point out that, since CFMs are
mainly excited in the first two unstable regions (especially the
first one) of the Mathieu stability diagram and the estimated
critical initial velocity is quite small (normally of the order of
0.01), the above procedure using asymptotic critical velocity
curves to determine the excited CFMs is reliable. However, the
calculated critical initial velocity may not be so accurate since
the discarded nonlinear couplings may become remarkably
pronounced when they are accounted for, which will be shown
in section 6.

Detailed analyses of the nonlocal length effect on
mode transformation of the selected armchairs, as shown in
figures 7–10, reveal that, as nonlocal length increases, CFMs
from 3 to 6 and occasionally higher modes can be excited in
individual armchairs. Since MD simulations show that only
CFM-3 is excited for all the selected armchairs, we need to
find a common sub-range of nonlocal lengths in which the right
nonlocal model can predict similar results for all the armchairs
with thickness either 0.066 or 0.1 nm. The sub-range of 0–
0.5 nm for each of the four cases (i.e. individual armchairs
with thickness either 0.066 or 0.1 nm, based on either positive
or negative nonlocal models) is searched and the results are
shown in table 6, in which CFM-3 will be excited in all the
armchairs. For the situation when two or more sub-ranges
are found, if the gap between the successive sub-ranges is
rather narrow, the possibility that other modes are excited in
this small gap is rare. Therefore, the separated sub-ranges
will be united by neglecting the small gaps. For instance, in
the case of armchair (8, 8) with thickness 0.066 nm based on
the negative nonlocal model, originally two sub-ranges 0.114–
0.195 nm and 0.199–0.261 nm are found for CFM-3. Since
the gap 0.196–0.198 is very narrow, it is neglected and then
one united sub-range 0.114–0.261 nm is taken. The final
four common sub-ranges are found for the four cases and
are also given in table 6. Three common sub-ranges (for the
cases based on both nonlocal models when the thickness is
0.066 nm and based on the positive nonlocal model when the
thickness is 0.1 nm) are very narrow and hence are discarded.
The valid one is 0.122–0.259 nm for the case of armchairs
with thickness 0.1 nm based on the negative nonlocal model.
Actually, for the valid case, the first three armchairs give a
common sub-range 0.071–0.259 nm and the armchair (11, 11)
upgrades the lower limit to 0.122 nm. It is shown again that the
negative second-order nonlocal model should be adopted for
the nonlocal modelling of SWCNTs. Furthermore, thickness
0.1 nm, rather than 0.066 nm, is appropriate to SWCNTs as far
as mode transformation is concerned.

5. Discussion of nonlocal length

Before numerical examples of the mode transformation are
shown in section 6, further discussion on nonlocal length is
necessary. It has been shown that different nonlocal lengths
have been determined for RBM and CFMs from the frequency
analysis while a range of nonlocal lengths is obtained based on
mode transformation analysis. According to classical nonlocal
elasticity theories (Eringen 1983b) and their applications to
CNTs (Zhang et al 2004, Wang and Hu 2005, Zhang et al
2005), nonlocal length as an intrinsic length of material
microstructure should be unique to SWCNTs. However,
the present study and other publications in the literature
(Duan et al 2007, Hu et al 2008) clearly show that nonlocal
length is dependent on vibration mode number. When mode
transformations appear during the vibration of an SWCNT,
RBM and one or more CFMs will be involved in the vibration
process. It seems inconsistent in mode transformation analysis
when a fixed nonlocal length is adopted. However, if one
discards the fixed nonlocal length assumption and takes it as a
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Table 6. Nonlocal length intervals within which CFM-3 is predicted to be excited by the positive and negative nonlocal models. Two
thickness values, 0.066 and 0.1 nm, are considered for all armchairs from (8, 8) to (11, 11). NL(−) and NL(+) correspond to negative and
positive nonlocal models, respectively.

h = 0.066 nm h = 0.1 nm

Armchair NL(−) NL(+) NL(−) NL(+)

(8, 8) 0.114–0.261 0.145–0.205 0.001–0.259 0.001–0.056
0.145–0.205

(9, 9) 0.160–0.294 0.164–0.230 0.001–0.292 0.001–0.026
0.164–0.230

(10, 10) 0.207–0.326 0.182–0.256 0.071–0.325 0.182–0.256
(11, 11) 0.256–0.347 0.200–0.281 0.122–0.358 0.200–0.281
Common sub-range 0.256–0.261 0.200–0.205 0.122–0.259 0.200–0.205

function of vibration modes, it makes the problem dramatically
complicated, which is outside the scope of the present research.

In order to overcome the limitation of the negative
nonlocal model with fixed nonlocal length, we performed
a probability analysis of the most likely excited CFMs in
armchair SWCNTs from (8, 8) to (11, 11) with thickness
0.1 nm based on the Mathieu stability diagram. The analysis
results are presented in figure 11. It is shown that, as
nonlocal length varies from 0 to 0.5 nm in a step of
0.001 nm, only CFM-3, CFM-4 and CFM-5 are excited and
their excitation probabilities are 83.2%, 11.1% and 5.7%,
respectively. Therefore, regardless of the specific value of
nonlocal length in 0–0.5 nm, the excitation probability of
CFM-3 is dominant based on the negative nonlocal model,
which agrees well with MD predictions.

6. Numerical examples of mode transformation

Now we have found that the negative second-order strain
gradient nonlocal model is appropriate for armchairs with
thickness 0.1 nm. Nonlocal length in the model can be given
as 0.1 nm in an average sense since RBM is the principal
vibration mode (it is also within the required common range for
armchairs (8, 8) to (10, 10)). Next, armchair (10, 10) is taken
as the example to show the mode transformation phenomenon
based on local and negative nonlocal models, respectively.
The fourth-order Runge–Kutta method is employed to solve
the original governing differential equations (17)–(19) under
initial conditions given in equation (37). In order to compare
numerical solutions from the two models, the imperfections
in equation (37) are fixed at exactly two orders smaller than
the initial RBM velocity. The same stochastically produced
imperfections are prescribed in the two models.

The initial RBM velocity v0/c is given as 0.02 and 0.04,
respectively, in the calculations based on local and negative
nonlocal models. The required initial velocities in the two
models are predicted as 0.0059 and 0.0349 (see table 5),
respectively. The given initial RBM velocity for the local
model is much higher than the required one. This is simply
because a fast mode transformation is sought in the calculation.
It is actually found that, when the initial RBM velocity in
the local model is given just slightly larger than the required
value (use 0.006 in the real calculation), mode transformations
emerge nearly 10 times slower and the amplitude of the excited

CFM-5 is very small. Therefore, a larger value is preferred on
the premise that a convergent solution can be obtained and 0.02
is selected after a few trials.

Graphs (a)–(c) in figures 12 and 14, respectively, are the
time domain responses of RBM and the excited dominant
CFM at point θ = 0 on the middle surface. Responses of
nearby CFMs around the dominant one are also plotted in the
remaining three graphs (d)–(f) in these two figures in order to
compare the amplitudes between the dominant CFM, which
is supposed to be the most likely excited CFM based on the
Mathieu stability diagram, and other nearby CFMs, which
should be much smaller in amplitude. Just as predicted by the
Mathieu stability diagram, modes 5 and 3 are the most likely
excited CFMs in armchair (10, 10) with thickness 0.1 nm from
local and nonlocal models, respectively. Other nearby CFMs
have much smaller amplitudes than the dominant one. The
coupled vibrations of RBM and CFMs at a point on the middle
surface are shown in graph (c) of the two figures.

Frequency domain responses of RBM and the dominant
flexural mode at the same point on the middle surface are
shown in figures 13 and 15, respectively. It can be seen from
figure 13 that, for the case of armchair (10, 10) with thickness
0.1 nm in the local model, only one major peak appears at
roughly the same point in all three vibration frequency spectra.
It implies that the excited dominant CFM-5 has approximately
the same frequency as the prime vibration mode, RBM. This
can be easily understood by means of the Mathieu stability
diagram. As discussed in section 4, CFM-5 is the most likely
excited mode in armchair (10, 10) with thickness 0.1 nm in
the local model, which occurs in the second unstable region
of the Mathieu stability diagram, i.e. �n ≈ 1 (n = 5).
�n is the dominant term in the coefficient of cn (i.e. �n −
μn sin η) in equation (39). It can be deduced that the circular
frequency of the vibration of cn is approximately the RBM
frequency. However, for the same armchair in the negative
nonlocal model, as shown in figure 15, the excited CFM-3
has a frequency approximately half of the RBM frequency.
Accordingly, there are two evident frequency peaks in the
vibration spectrum of the point θ = 0 on the middle surface.
This phenomenon can also be explained with the help of the
Mathieu stability diagram. In this case, the most likely excited
CFM will happen in the first unstable region around �n ≈
0.25. Accordingly, the solution of cn in equation (39) will
possess a normalized circular frequency of around 0.5, i.e. a
circular frequency of around half of the RBM frequency.
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Figure 14. Response of armchair (10, 10) (h = 0.1 nm) within the negative nonlocal model in real-time domain (l = 0.1 nm). (a) RBM,
(b) CFM-3 and (c) total response at point θ = 0 on the middle surface. (v0/c = 0.04.) (d) CFM-2, (e) CFM-4 and (f) CFM-5.

These numerical examples show that mode interaction
and mode transformation exist in nanoscale structures like
SWCNTs. When the RBM vibration amplitude is sufficiently
high, it may become unstable and then nearby CFMs are
excited. Similar to macroscopic thin circular cylindrical
shells (Nayfeh and Raouf 1987, Amabili et al 2000),
1:1 and 2:1 internal resonance phenomena may occur in
SWCNTs simulated respectively by local and nonlocal models.
Therefore, the internal resonance mechanism is model-
dependent. By referring to the MD simulations, the negative
nonlocal model is found to be appropriate to SWCNTs. As
a result, armchair (10, 10) with thickness 0.1 nm is shown to
possess a 2:1 internal resonance mechanism.

7. Conclusions

Based on the second-order strain gradient nonlocal constitutive
equation between stress and strain, a nonlocal circular
cylindrical shell model is established by extending the original
Goodier and McIvor’s thin circular cylindrical shell theory
to a nonlocal version. Between the positive and negative
second-order strain gradient nonlocal models, it is found
that the negative nonlocal model is appropriate to armchair
SWCNTs with thickness 0.1 nm. Furthermore, the nonlocal
length is determined by fitting RBM frequency against MD
simulations and a representative nonlocal length approximately
0.1 nm in an average sense is obtained. When frequencies of
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Figure 15. Response of armchair (10, 10) (h = 0.1 nm) within the
negative nonlocal model in frequency domain (l = 0.1 nm).
(a) RBM, (b) CFM-3 and (c) total response at point θ = 0 on the
middle surface. (v0/c = 0.04.)

CFMs are evaluated, nonlocal length is found to be dependent
on the flexural modes for a given SWCNT. Both frequency
analyses show that the nonlocal length is also related to the
radius-to-thickness ratio. When the nonlocal effect on mode
transformation is investigated, a range of 0.122–0.259 nm is
obtained for the nonlocal length in the negative second-order
nonlocal model. The representative nonlocal length 0.1 nm
based on RBM frequency analysis can predict the same mode
transformation as in MD simulations. Finally, 1:1 and 2:1

internal resonance mechanisms through numerical examples
are demonstrated for local and negative nonlocal models,
respectively, which indicates that the internal resonance
mechanism depends on the continuum models employed.
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